## Brake Pad Partnership Project

## Copper Use Monitoring Program

## Results for Model Years 1998-2006

February 10, 2008

For more information, please contact: Ashley Boren, Program Director
Brake Pad Partnership Project
Sustainable Conservation
98 Battery Street, Suite 302
San Francisco, CA 94111
415/977-0380, x306
aboren@suscon.org

## Introduction and Purpose

This report contains data on copper use in original equipment ${ }^{1}$ automotive friction materials ${ }^{2}$ for the model years 1998 to 2006, which are presented in Table 1. "Friction materials" include disc brake pads (on front and rear brakes) and drum brake linings (on rear brakes only). The Brake Manufacturers Council's Product Environmental Committee (BMC/PEC) reports annually on the amount of copper in friction materials as a part of its members' participation in the Brake Pad Partnership. ${ }^{3,4}$

These data are important to the Brake Pad Partnership for the purposes of:
(1) monitoring trends in copper use over the course of the Partnership, and monitoring the industry's voluntary reduction in use of copper in the event the Partnership determines that copper from friction materials is a significant cause of water quality impairment; and
(2) providing inputs for modeling studies of the environmental fate and transport of automotive friction material wear debris in the environment.

## Data Strengths and Limitations

- Best available data set. These are the most comprehensive and reliable data available regarding the copper content of automotive friction materials in the United States. They are reported voluntarily by the BMC/PEC as a part of its members' participation in the Brake Pad Partnership, and would not be collected and made publicly available without the Partnership's cooperative approach.
- Data are for approximately $\mathbf{4 0 \%}$ of new automobiles. The data for model years 1998 to 2001 are reported for the copper content of vehicle friction materials for the top 20 best-selling vehicles, which comprise approximately $40 \%$ of the new cars and light trucks sold in the United States. For model years 2002 to 2006, data were not available for all of the top 20 best-selling vehicles. The sample used for model year 2002 includes 20 of the top 25 best-selling vehicles for which data were available, which comprises $39 \%$ of the new cars and light trucks sold in the United States for that model year. The sample used for model year 2003 includes 23 of the top 25 best-selling vehicles for which data were available, which comprises $42 \%$ of the new cars and light trucks sold in the United States for that model year. The sample used for model year 2004 includes 22 of the top 25 selling vehicles for which data were available, which comprises $39 \%$ of the new cars and light trucks sold in the United States for that model year. The sample used for model year 2005 includes 23 of the top 25 best-selling vehicles for which data were available,

[^0]which comprises $38 \%$ of the new cars and light trucks sold in the United States for that model year. The sample used for model year 2006 includes the top 25 best-selling vehicles for which data were available, which comprises $35 \%$ of the new cars and light trucks sold in the United States for that model year.

- Trend indicator. The data indicate the industry trend in use of copper in friction materials. The data do not provide the total amount of copper used in friction materials in the vehicle fleet.
- Data are not designed for mass load calculations. These data are not intended nor are they appropriate for calculating total copper loadings to the environment from friction materials on a national, regional, or local scale. While the data represent a significant sample of new vehicles, they encompass less than half of the friction materials in new vehicles. Copper use in other vehicles and vehicle sectors and in the aftermarket is likely to differ significantly from that reported here for the top selling new vehicles. Within a region or watershed, variations in fleet mix and vehicle use patterns also contribute to differences in copper content and amounts of wear debris released to the environment. It is important to note that not all of the copper in friction materials is released to the environment. Friction material ingredients can wear out of a pad or lining at different rates, and brake pads and linings are normally replaced with a considerable amount of the friction material still intact.
- Actual copper content. The data are based on manufacturers' reporting of the actual copper content of their products. These data are collected and made available by the BMC/PEC in a manner that protects manufacturers' confidential business information, including the copper content of friction materials on specific new vehicles and the name of the manufacturer that supplies the friction materials.
- Actual vehicle sales data. The data reflect actual sales for each model year.
- Vehicle fleet mixes vary. The data do not reflect regional variations in vehicle fleet mixes.
- Aftermarket (replacement) brake pads and linings are not included. The data are for "original equipment" friction materials only. "Original equipment" refers to parts that are installed on new vehicles. It does not include "aftermarket" or replacement parts. The BMC/PEC has stated that the copper content of aftermarket friction materials is small, but no public data are available to confirm that statement.
- Heavy-duty trucks, off-road vehicles, and motorcycles are not included. These data are for friction materials used in cars and light trucks. The data do not include friction materials used on heavy-duty trucks, off-road vehicles, or motorcycles. Manufacturers of these other friction material types are not currently participating in the Brake Pad Partnership.


## Data Collection and Reporting Process

The Brake Manufacturers Council's Product Environmental Committee (BMC/PEC) consists of the majority of companies that manufacture original equipment friction materials for automotive vehicles manufactured in the United States, Canada, and Mexico for sale in the United States. The BMC/PEC has developed a process for collecting and reporting these data that produces accurate information while maintaining the confidentiality of its member companies' proprietary business information.

The data reported here represent the amount of copper and friction material used on samples of the most popular vehicles sold in the United States, by model year, comprising approximately $40 \%$ of the total U.S. sales of domestic automobiles.

## Sample Selection

The samples selected for data collection were from the top best selling domestic cars and light trucks for each model year. All data on actual vehicle sales were obtained from the Ward's Automotive Yearbooks. ${ }^{5}$ For model years 1998 to 2001, the top 20 best selling vehicles were selected comprising about $40 \%$ of the total vehicle sales for each year. The list of the Top 20 best selling vehicles for model years 1998 through 2001 and their sales volumes are shown in Table 2.

For model years 2002 to 2006, data were not available for some of the top 20 best selling vehicles, and the sampling method was modified to include available data on the top 25 best selling vehicles to obtain a sample comprising approximately $40 \%$ of the total vehicle sales for the year. Table 3 lists the vehicles sampled for model years 2002 through 2006. Those vehicles for which volumes are listed in the "processed" column are the ones for which copper use data were available. Those vehicles for which check marks appear in the "calculated" column are ones that may be purchased with a choice of different brake systems. The sample includes only those vehicles having disc brake systems.

## Data Collection

Each year, data are requested from each of the BMC/PEC member companies on the friction materials supplied for each of the vehicle makes and models on the list of top selling vehicles. Specifically, information is requested for the make and model to which the manufacturers supplied in January of the model year.

A copy of the information request form used is contained in Appendix B. The specific information requested of and reported by the manufacturers included:

- the weight of the friction material for one axle set (front and rear reported separately),
- the total copper by weight in the friction material for one axle set, and
- the percentage of the model production for which the data are applicable.


## Data Aggregation

The BMC/PEC process for collecting and reporting these data is designed to provide highquality, accurate information while maintaining the confidentiality of its member companies' proprietary business information. Several checks are built into the process. At least two individuals review and confirm the annual list of top selling vehicles. Data are entered into an electronic spreadsheet from the reporting forms submitted by the manufacturers, and then checked for accuracy by two other individuals. Once the data have been recorded and checked, the spreadsheet is locked so that it cannot be altered accidentally, and the original information is destroyed to protect the manufacturers' proprietary business information.

[^1]The data are analyzed using calculation formulas on the spreadsheet that are also locked to prevent accidental errors. Upon completion of the data analysis, they are checked by one other individual, and the entire spreadsheet is locked to prevent further changes.

The resultant aggregated data, combined with the actual annual sales volume numbers from Ward's Automotive Reports, contains information on the total friction material and copper use for the sample for each model year. These data are reported in Table 1.

| Model Year: | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | $\underline{2005}$ | $\underline{2006}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Top Selling VehicleSamples $^{6}$ |  |  |  |  |  |  |  |  |  |
| Total vehicle sales (vehicles) | 15,540,765 | 16,890,536 | 17,349,760 | 17,122,368 | 16,816,368 | 16,639,053 | 16,866,920 | 16,947,754 | 16,504,400 |
| Top 20 vehicle sales (vehicles) | 6,659,538 | 6,931,931 | 6,810,814 | 6,799,008 | -- | -- | -- | -- | -- |
| Sample vehicle sales | -- | -- | -- | -- | 6,633,977 | 7,011,419 | 6,535,136 | 6,450,906 | 5,705,459 |
| Percent of total vehicle sales | 42.8\% | 41.0\% | 39.3\% | 39.7\% | 39.4\% | 42.1 \% | 38.7\% | 38.1\% | 34.6\% |
| Friction material in Top 20 <br> (kg) | 9,366,940 | 9,109,322 | 8,556,864 | 8,416,727 | -- | -- | -- | -- | -- |
| Friction material in Sample 20 (kg) | -- | -- | -- | -- | 7,850,371 | 8,142,643 | 8,112,754 | 7,779,893 | 6,081,554 |
| Friction material per vehicle <br> (kg) | 1.406 | 1.314 | 1.256 | 1.238 | 1.183 | 1.161 | 1.241 | 1.206 | 1.066 |
| Cu in Top 20 (kg) | 267,462 | 358,541 | 384,145 | 381,507 | -- | -- | -- | -- | -- |
| Cu in Sample (kg) | -- | -- | -- | -- | 507,938 | 538,992 | 424,780 | 427,365 | 498,225 |
| Cu per vehicle (kg) | 0.0402 | 0.0517 | 0.0564 | 0.0561 | 0.0766 | 0.0769 | 0.0650 | 0.0662 | 0.0873 |

[^2]TABLE 2. Top 20 Best-Selling Vehicles and Actual Sales for Model Years 1998 through 2001.

| Segment, Make and Model | Actual Sales |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1998 | 1999 | 2000 | 2001 |
| Small Car | 5.1\% | 4.6\% | 7.1\% | 7.1\% |
| Chevrolet Cavalier | 256,099 | 272,122 | 236,803 | 233,298 |
| Ford Escort | 291,936 | 260,486 | n/a | n/a |
| Ford Focus | n/a | n/a | 286,166 | 264,414 |
| Saturn | n/a | n/a | 177,355 | 162,110 |
| Toyota Corolla | 250,500 | 249,128 | 230,156 | 245,023 |
| Honda Civic | n/a | n/a | 306,748 | 311,314 |
| Segment total | 798,535 | 781,736 | 1,237,228 | 1,216,159 |
| Middle Car | 11.3\% | 10.5\% | 8.2\% | 9.2\% |
| Chevrolet Malibu | 223,703 | 218,540 | 207,376 | 176,583 |
| Honda Civic | 317,134 | 308,807 | n/a | n/a |
| Pontiac Grand Am/Oldsmobile Alero ${ }^{7}$ | 180,428 | 234,936 | 214,923 | 291,348 |
| Ford Taurus/Mercury Sable ${ }^{8}$ | 371,074 | 368,327 | 382,035 | 456,206 |
| Honda Accord | 370,984 | 316,339 | 317,483 | 350,090 |
| Toyota Camry | 295,108 | 320,156 | 298,123 | 303,436 |
| Segment total | 1,758,431 | 1,767,105 | 1,419,940 | 1,577,663 |
| Sport Utility Vehicle (SUV) | 7.4\% | 7.4\% | 7.3\% | 5.2\% |
| Chevrolet Blazer | 219,710 | 232,140 | 255,948 | n/a |
| Ford Explorer/Mercury Mountaineer | 479,083 | 478,003 | 491,704 | 461,495 |
| Jeep Grand Cherokee | 229,135 | 300,031 | 271,723 | 223,612 |
| Ford Expedition/Lincoln Navigator | 225,703 | 233,125 | 251,406 | 209,804 |
| Segment total | 1,153,631 | 1,243,299 | 1,270,781 | 894,911 |
| Van/Small Pickup | 6.8\% | 6.3\% | 5.6\% | 5.8\% |
| Dodge Caravan/Plymouth Voyager/Chrysler Voyager | 450,790 | 431,744 | 384,561 | 287,481 |
| GMC Sonoma/S10 | 282,912 | 291,661 | 262,680 | 204,243 |
| Ford Ranger/Mazda ${ }^{9}$ | 328,136 | 348,358 | 330,125 | 298,591 |
| Ford Windstar/Mercury Voyager | n/a | n/a | n/a | 201,641 |
| Segment total | 1,061,838 | 1,071,763 | 977,366 | 991,956 |
| Large Pickup | 12.1\% | 12.2\% | 11.2\% | 12.4\% |
| Chevrolet Silverado/GMC Sierra | 235,110 | 734,234 | 734,377 | 908,629 |
| Chevrolet and GMC C/K | 454,311 | 98,285 | n/a | $\mathrm{n} / \mathrm{a}$ |
| Dodge Ram | 410,130 | 428,930 | 380,874 | 344,538 |
| Ford F-series | 787,552 | 806,579 | 820,248 | 865,152 |
| Segment total | 1,887,103 | 2,068,028 | 1,935,499 | 2,118,319 |
| Total Top 20 vehicle sales | 6,659,538 | 6,931,931 | 6,810,814 | 6,799,008 |
| Percent of total vehicle sales | 42.8\% | 41.0\% | 39.3\% | 39.7\% |
| Total vehicle sales | 15,540,765 | 16,890,536 | 17,349,760 | 17,122,368 |

[^3]TABLE 3. Sample Selection for Model Years 2002 through 2006

| Segment/Vehicle | Volume (number of vehicles) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Selected ${ }^{10}$ | $\begin{gathered} 2002 \\ \text { Processed }^{11} \end{gathered}$ | Calculated ${ }^{12}$ | Selected ${ }^{10}$ | $\begin{gathered} 2003 \\ \text { Processed }^{11} \end{gathered}$ | Calculated ${ }^{12}$ |
| Small Cars: |  |  |  |  |  |  |
| Honda Civic | 283,173 | 283,173 |  | 260,632 | 260,632 |  |
| Chevrolet Cavalier | 238,225 | 0 |  | 256,550 | 256,550 | $\checkmark$ |
| Ford Focus | 243,199 | 243,199 |  | 229,353 | 229,353 |  |
| Toyota Corolla | 222,017 | 222,017 | $\checkmark$ | 265,449 | 265,449 | $\checkmark$ |
| Middle Cars: |  |  |  |  |  |  |
| Toyota Camry | 343,796 | 343,796 |  | 367,394 | 367,394 |  |
| Ford Taurus/Mercury Sable | 431,688 | 431,688 |  | 361,838 | 361,838 |  |
| Honda Accord | 330,692 | 330,692 |  | 325,465 | 325,465 | $\checkmark$ |
| Pontiac Grand Am/Oldsmobile Alero | 245,103 | 0 |  | 255,589 | 0 |  |
| Chevrolet Impala | 198,918 | 0 |  | 267,882 | 0 |  |
| Nissan Altima | 201,822 | 201,822 | $\checkmark$ | 201,240 | 201,240 | $\checkmark$ |
| Chevrolet Malibu | 169,377 | 0 |  | 173,263 | 173,263 | $\checkmark$ |
| CUVs: |  |  |  |  |  |  |
| PT Cruiser/Dodge Neon/Plymouth Neon | 264,817 | 264,817 |  | 227,860 | 227,860 |  |
| SUVs: |  |  |  |  |  |  |
| Large GMC SUVs (e.g., Tahoe/ Suburban) | 540,981 | 540,981 |  | 527,033 | 527,033 |  |
| Ford Explorer/Mercury Mountaineer | 481,991 | 481,991 |  | 422,810 | 422,810 |  |
| Chevrolet TrailBlazer/Oldsmobile | 374,625 | 374,625 |  | 397,168 | 397,168 |  |
| Bravada/GMC Envoy |  |  |  |  |  |  |
| Jeep Grand Cherokee | 224,233 | 224,233 |  | 207,479 | 207,479 |  |
| Ford Escape/Mazda Tribute | 190,460 | 0 |  | 217,190 | 217,190 | $\checkmark$ |
| Ford Expedition/Lincoln Navigator | 194,067 | 194,067 | $\checkmark$ | 220,289 | 220,289 | $\checkmark$ |
| Jeep Liberty | n/a | $\mathrm{n} / \mathrm{a}$ | n/a | 162,987 | 162,987 |  |
| Van/Small Pickup: |  |  |  |  |  |  |
| DC Minivans (e.g., Caravan/ Voyager/Town \& County) | 408,681 | 408,681 | $\checkmark$ | 374,494 | 374,494 |  |
| Ford Ranger/Mazda Pickup | 246,359 | 246,359 |  | 224,087 | 224,087 |  |
| Chevrolet S10/GMC Sonoma | 192,092 | 192,092 |  | 171,613 | 171,613 |  |
| Ford Windstar/Mercury Villager | 165,317 | 165,317 | $\checkmark$ | n/a | n/a | n/a |
| Large Pickup: |  |  |  |  |  |  |
| Chevrolet Silverado/GMC Sierra | 847,894 | 847,894 |  | 880,318 | 880,318 |  |
| Ford F-Series | 774,037 | 774,037 |  | 806,887 | 806,887 |  |
| Dodge Ram Pickup | 396,934 | 396,934 | $\checkmark$ | 449,371 | 449,371 |  |
| Total Volume of Sample: | 8,210,498 | 7,168,415 | 6,633,977 | 8,254,241 | 7,730,770 | 7,011,419 |
| Total Volume: | 16,816,368 | 16,816,368 | 16,816,368 | 16,639,053 | 16,639,053 | 16,639,053 |
| Percentage: | 49\% | 43\% | 39\% | 49.6\% | 46.5\% | 42.1 \% |

[^4]TABLE 3. Sample Selection for Model Years 2002 through 2006 (continued)

| Segment/Vehicle | Volume (number of vehicles) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Selected ${ }^{10}$ | $\begin{gathered} 2004 \\ \text { Processed }^{11} \end{gathered}$ | Calculated ${ }^{12}$ | Selected ${ }^{10}$ | $\begin{gathered} 2005 \\ \text { Processed }^{11} \end{gathered}$ | Calculated ${ }^{12}$ |
| Small Cars: |  |  |  |  |  |  |
| Honda Civic | 274,540 | 274,540 | $\checkmark$ | 263,833 | 263,833 | $\checkmark$ |
| Chevrolet Cavalier | 195,275 | 0 |  | 231,672 | 0 |  |
| Ford Focus | 208,339 | 208,339 |  | 184,825 | 184,825 |  |
| Toyota Corolla | 306,510 | 306,510 | $\checkmark$ | 330,782 | 330,782 | $\checkmark$ |
| Middle Cars: |  |  |  |  |  |  |
| Toyota Camry | 402,063 | 402,063 |  | 402,887 | 402,887 |  |
| Ford Taurus/Mercury Sable | 290,885 | 290,885 | $\checkmark$ | 221,068 | 221,068 | $\checkmark$ |
| Honda Accord | 325,925 | 325,925 | $\checkmark$ | 350,257 | 350,257 | $\checkmark$ |
| Chevrolet Impala | 290,259 | 0 |  | 246,481 | 0 |  |
| Nissan Altima | 235,889 | 235,889 | $\checkmark$ | 255,371 | 255,371 | $\checkmark$ |
| Chevrolet Malibu | 268,017 | 268,017 | $\checkmark$ | 245,861 | 245,861 | $\checkmark$ |
| CUVs: |  |  |  |  |  |  |
| PT Cruiser/Dodge Neon/Plymouth Neon | 213,435 | 213,435 |  | 229,220 | 229,220 | $\checkmark$ |
| SUVs: |  |  |  |  |  |  |
| Large GMC SUVs (e.g., Tahoe/ Suburban) | 495,188 | 495,188 | $\checkmark$ | 396,302 | 396,302 |  |
| Ford Explorer/Mercury | 383,249 | 383,249 |  | 272,279 | 272,279 |  |
| Mountaineer |  |  |  |  |  |  |
| Chevrolet TrailBlazer/Oldsmobile | 420,354 | 420,354 |  | 352,339 | 352,339 |  |
| Bravada/GMC Envoy |  |  |  |  |  |  |
| Jeep Grand Cherokee | 182,313 | 0 |  | 213,584 | 213,584 |  |
| Ford Escape/Mazda Tribute | 224,508 | 224,508 | $\checkmark$ | 201,883 | 201,883 | $\checkmark$ |
| Ford Expedition/Lincoln Navigator | 196,244 | 196,244 |  | 139,981 | 139,981 |  |
| Jeep Liberty | 167,376 | 167,376 |  | 166,883 | 166,883 |  |
| Van/Small Pickup: |  |  |  |  |  |  |
| DC Minivans (e.g., Caravan/ Voyager/Town \& County) | 369,330 | 369,330 | $\checkmark$ | 407,530 | 407,530 | $\checkmark$ |
| Ford Ranger/Mazda Pickup | 166,588 | 166,588 |  | 126,830 | 126,830 |  |
| Econoline Club Wagon | 171,017 | 171,017 |  | 179,543 | 179,543 |  |
| Toyota Sienna | 159,119 | 159,119 |  | 161,380 | 161,380 |  |
| Large Pickup: |  |  |  |  |  |  |
| Chevrolet Silverado/GMC Sierra | 894,399 | 894,399 |  | 935,468 | 935,468 |  |
| Ford F-Series | 891,482 | 891,482 |  | 854,878 | 854,878 |  |
| Dodge Ram Pickup | 426,289 | 426,289 |  | 400,543 | 400,543 |  |
| Total Volume of Sample: | 8,185,593 | 7,517,746 | 6,535,136 | 7,771,680 | 7,293,527 | 6,450,906 |
| Total Volume: | 16,866,920 | 16,866,920 | 16,866,920 | 16,947,754 | 16,947,754 | 16,947,754 |
| Percentage: | 49\% | 45\% | 39\% | 46\% | 43\% | 38\% |


| TABLE 3. Sample Selection for Model Years 2002 through 2006 (continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| Segment/Vehicle | Volume (number of vehicles) |  |  |
|  | Selected ${ }^{10}$ | $\stackrel{2006}{\text { Processed }^{11}}$ | Calculated ${ }^{12}$ |
| Small Cars: |  |  |  |
| Honda Civic | 272,899 | 272,899 | $\checkmark$ |
| Chevrolet Cobalt | 211,804 | 211,804 | $\checkmark$ |
| Ford Focus | 177,006 | 177,006 | $\checkmark$ |
| Toyota Corolla/Matrix | 335,054 | 335,054 | $\checkmark$ |
| Middle Cars: |  |  |  |
| Toyota Camry | 362,961 | 362,961 |  |
| Ford Taurus/Mercury Sable | 174,803 | 174,803 | $\checkmark$ |
| Honda Accord | 323,079 | 323,079 | $\checkmark$ |
| Chevrolet Impala | 289,868 | 289,868 |  |
| Nissan Altima | 232,457 | 232,457 | $\checkmark$ |
| Chevrolet Malibu | 163,853 | 163,853 | $\checkmark$ |
| CUVs: |  |  |  |
| PT Cruiser (formerly included Neon) | 143,387 | 143,387 | $\checkmark$ |
| Ford Escape/Mazda Tribute | 184,180 | 184,180 | $\checkmark$ |
| SUVs: |  |  |  |
| Large GMC SUVs (e.g., Tahoe/Suburban) | 394,608 | 394,608 |  |
| Ford Explorer/Mercury Mountaineer | 208,796 | 208,796 | $\checkmark$ |
| Chevrolet TrailBlazer/GMC Envoy | 249,249 | 249,249 |  |
| Jeep Grand Cherokee | 139,148 | 137,757 | $\checkmark$ |
| Jeep Liberty | 133,557 | 133,557 |  |
| Van/Small Pickup: |  |  |  |
| DC Minivans (e.g., Caravan) | 370,245 | 370,245 |  |
| Honda Odyssey | 177,919 | 177,919 | $\checkmark$ |
| Ford Econoline/Club Wagon | 180,457 | 180,457 |  |
| Toyota Sienna | 163,269 | 163,269 | $\checkmark$ |
| Toyota Tacoma | 178,351 | 178,351 | $\checkmark$ |
| Large Pickup: |  |  |  |
| Chevrolet Silverado/GMC Sierra | 846,805 | 846,805 | $\checkmark$ |
| Ford F-Series | 744,996 | 744,996 |  |
| Dodge Ram Pickup | 364,177 | 364,177 | $\checkmark$ |
| Total Volume of Sample: | 7,022,928 | 7,021,537 | 5,705,459 |
| Total Volume: | 16,504,400 | 16,504,400 | 16,504,400 |
| Percentage: | 42.6\% | 42.54\% | 34.57\% |

## APPENDIX A

## Vehicle Segment Definitions Used in Ward's Automotive Yearbook

Segment

## Small Cars

Lower Small Car
Upper Small Car
Small Specialty Car

## Middle Cars

Lower Middle Car
Upper Middle Car
Middle Specialty Car

## Large Cars

Large Car

## Luxury Cars

Lower Luxury Car
Middle Luxury Car
Upper Luxury Car
Luxury Specialty Car
Luxury Sport Car

## Cross Utility Vehicles (CUV)

Small CUV
Medium CUV
Large CUV

## Sport Utility Vehicles (SUV)

Small SUV
Middle SUV
Middle Luxury SUV
Large SUV
Large Luxury SUV
Vans
Small Van
Large Van
Luxury Van

## Pickup Trucks

Small Pickups
Large Pickups
\$11,500 and under
\$11,501 to \$17,999
Under \$18,000
\$14,500 to \$18,499
\$18,500 to \$24,999
$\$ 14,500$ to $\$ 24,900$

Under \$25,000
\$25,000 to \$32,999
$\$ 33,000$ to $\$ 43,999$
$\$ 44,000$ plus
$\$ 25,000$ plus
$\$ 25,000$ plus

Under \$20,000
$\$ 20,000$ to $\$ 30,000$
$\$ 30,000$ plus

Under \$20,000
Under \$30,000
$\$ 30,000$ plus
Under \$40,000
$\$ 40,000$ plus

Under \$26,000
Under \$26,000
\$26,000 plus
\$14,000 and under
Above \$14,000

Under 175 inches
Under 180 inches
Under 180 inches

180 to 190 inches
180 to 190 inches
180 to 199 inches

Over 200 inches

Under 180 inches 180 to 190 inches Over 190 inches

Under 170 inches 170 to 192 inches 170 to 192 inches
Over 192 inches
Over 192 inches

Under 210 inches 210 inches plus

Under 200 inches 200 inches plus

## APPENDIX B

## Sample Information Request Form

## Product Environmental Committee Friction Material Monitoring

## CONFIDENTIAL

This information is for the exclusive use of the Brake Manufacturers Council

Directions: 1. Identify brake manufacturer, e.g., Delphi.
2. Check the model year(s) applicable to the data.
3.List the make and model. (Example: Ford Ranger)
4.Report the axle set weights in gms.

Friction material weight is without steel, etc.
Copper content is for the axle set [See instructions].
2. Please fill in all blanks (use NA for "not applicable").
3. Return by fax, mail, or e-mail.

## Manufacturer:

$\qquad$
Model year (s): 0203
Make \& Model: $\qquad$
Front axle: Friction $\qquad$ gms. Copper $\qquad$ gms. \{Note 1\}

Percentage of model $\qquad$ Example: May be different materials with or without ABS

Rear axle: Friction $\qquad$ gms. Copper $\qquad$ gms. \{Note 1\}

Percentage of model $\qquad$

## *PERCENTAGE OF MODEL MUST BE FILLED IN FOR FRONT AND/OR REAR AXLES!

Note 1. The copper level in storm water is determined by atomic adsorption on unfiltered storm water. The water sample is treated with nitric acid to digest all forms of copper.

Factors for calculating net copper content in various copper containing additives are:

- Brass: Typical copper content is $70.0 \mathrm{wt} \%$, but may vary with the type of brass.
- Copper oxide ( $\mathrm{Cu}_{2} \mathrm{O}$ ): $88.8 \mathrm{wt} \%$ copper
- Copper oxide (CuO): $79.9 \mathrm{wt} \%$ copper
- Copper sulfide $\left(\mathrm{Cu}_{2} \mathrm{~S}\right): 79.9 \mathrm{wt} \%$ copper
- Copper sulfide (CuS): $66.5 \mathrm{wt} \%$ copper
(Same process as used for 2000 and 2001)

| Return to: | Brake Council Project Administrator |
| :--- | :--- |
|  | 10 Laboratory Drive |
|  | Research Triangle Park, NC 27709-3966 |


[^0]:    ${ }^{1}$ "Original equipment" refers to equipment that comes on new vehicles, and does not include "aftermarket" or replacement parts.
    ${ }^{2}$ "Automotive friction materials" refers to friction materials used in cars and light trucks, and does not include friction materials used on heavy-duty trucks, off-road vehicles, or motorcycles.
    ${ }^{3}$ The Brake Pad Partnership is a collaborative effort to understand the impacts on the environment that may arise from brake pad wear debris generated in the use of passenger vehicles. Working together, manufacturers, regulators, stormwater management agencies, and environmentalists developed an approach for evaluating potential impacts on water quality, using copper in the South San Francisco Bay as an example. Friction material manufacturers have committed to adding this evaluation approach to their existing practices for designing products that are safe for the environment while still meeting the performance requirements demanded of these important safety-related products.
    ${ }^{4}$ The data reported herein were originally reported in: Anderson, Richard. "Friction Material Content Monitoring: A Project of the BMC Product Environmental Committee." Motor and Equipment Manufacturers Association, Research Triangle Park, North Carolina. December 20, 2007.

[^1]:    ${ }^{5} 1999$ Ward's Automotive Yearbook, $61^{\text {st }}$ Edition. Ward's Communications, Detroit. Pp. 246-248. 2000 Ward's Automotive Yearbook, $62^{\text {nd }}$ Edition. Ward's Communications, Detroit. Pp. 244-246. 2001 Ward's Automotive Yearbook, $63^{\text {rd }}$ Edition. Ward's Communications, Detroit. Pp. 249-251. 2002 Ward's Automotive Yearbook, $64^{\text {th }}$ Edition. Ward's Communications, Detroit. Pp. 243-245. 2003 Ward's Automotive Yearbook, $65^{\text {th }}$ Edition. Ward's Communications, Detroit. Pp. 234-236. 2004 Ward's Automotive Yearbook, $66^{\text {th }}$ Edition. Ward's Communications, Detroit. Pp. 244-246. 2005 Ward's Automotive Yearbook, $67^{\text {th }}$ Edition. Ward's Communications, Detroit. Pp. 243-245. 2006 Ward's Automotive Yearbook, $68^{\text {th }}$ Edition. Ward's Communications, Detroit. Pp. 234-236. 2007 Ward's Automotive Yearbook, $69^{\text {th }}$ Edition. Ward's Communications, Detroit, Pp. 244-246.

[^2]:    ${ }^{6}$ A list of the top 20 best-selling vehicles for each model year from 1998 to 2001 is included in Table 2, and a list of the top 25 best-selling vehicles sampled for model years 2002 through 2006 is included in Table 3.

[^3]:    ${ }^{7}$ Starting 2001 includes Oldsmobile Alero.
    ${ }^{8}$ Starting 2001 includes Mercury Sable.
    ${ }^{9}$ Starting 2001 includes Mazda.
    $\mathrm{n} / \mathrm{a}$ (not applicable): This vehicle not in top 20 best-selling vehicles for corresponding model year.

[^4]:    ${ }^{10}$ Includes all of the top 25 best selling vehicles.
    ${ }^{11}$ Includes the top 25 best selling vehicles for which copper use data are available.
    ${ }^{12}$ Indicates vehicles available with different brake systems. Includes only vehicles having disc brake systems.
    $\mathrm{n} / \mathrm{a}$ (not applicable): This vehicle not in the top 25 best-selling vehicles for corresponding model year.

